3.321 \(\int \cot (c+d x) \sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=131 \[ \frac{\sqrt{a-i b} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{\sqrt{a+i b} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d} \]

[Out]

(-2*Sqrt[a]*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/d + (Sqrt[a - I*b]*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c
 + d*x]]/Sqrt[a - I*b]])/d + (Sqrt[a + I*b]*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.360248, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {3612, 3539, 3537, 63, 208, 3634} \[ \frac{\sqrt{a-i b} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{\sqrt{a+i b} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(-2*Sqrt[a]*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/d + (Sqrt[a - I*b]*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c
 + d*x]]/Sqrt[a - I*b]])/d + (Sqrt[a + I*b]*(A + I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d

Rule 3612

Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]])/((a_.) + (b_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[Simp[A*(a*c + b*d) + B*(b*c - a*d) - (A*(b*c - a*d)
- B*(a*c + b*d))*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]], x], x] - Dist[((b*c - a*d)*(B*a - A*b))/(a^2 + b^2
), Int[(1 + Tan[e + f*x]^2)/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \cot (c+d x) \sqrt{a+b \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=(a A) \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx+\int \frac{A b+a B-(a A-b B) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{1}{2} (A b+a B-i (-a A+b B)) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{1}{2} (A b+a B+i (-a A+b B)) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{(a A) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{(2 a A) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}-\frac{((a-i b) (A-i B)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac{((a+i b) (A+i B)) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d}-\frac{((i a+b) (A-i B)) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}+\frac{((i a-b) (A+i B)) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{\sqrt{a-i b} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{\sqrt{a+i b} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}\\ \end{align*}

Mathematica [A]  time = 0.556041, size = 219, normalized size = 1.67 \[ -\frac{-\frac{\left (A \left (a \sqrt{-b^2}+b^2\right )+b B \left (a-\sqrt{-b^2}\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{-b^2}}}\right )}{\sqrt{-b^2} \sqrt{a-\sqrt{-b^2}}}+\frac{\left (A \left (b^2-a \sqrt{-b^2}\right )+b B \left (a+\sqrt{-b^2}\right )\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+\sqrt{-b^2}}}\right )}{\sqrt{-b^2} \sqrt{a+\sqrt{-b^2}}}+2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

-((2*Sqrt[a]*A*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]] - ((A*(b^2 + a*Sqrt[-b^2]) + b*(a - Sqrt[-b^2])*B)*Ar
cTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - Sqrt[-b^2]]])/(Sqrt[-b^2]*Sqrt[a - Sqrt[-b^2]]) + ((A*(b^2 - a*Sqrt[-b
^2]) + b*(a + Sqrt[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + Sqrt[-b^2]]])/(Sqrt[-b^2]*Sqrt[a + Sqrt
[-b^2]]))/d)

________________________________________________________________________________________

Maple [C]  time = 1.433, size = 29038, normalized size = 221.7 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \tan{\left (c + d x \right )}\right ) \sqrt{a + b \tan{\left (c + d x \right )}} \cot{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*sqrt(a + b*tan(c + d*x))*cot(c + d*x), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out